RADAR GEOMETRY – SCHEMA 1 (flat surface)

- r_a ... azimuth resolution
- r_r ... range resolution
- L ... length of the antenna
- i ... incidence angle
- C ... speed of light
- Δt ... pulse width

Azimuth
(direction of the movement of the sensor)

Range
(direction perpendicular to the movement of the sensor)

Ground pixel area:

$$S_{flat} = \frac{r_r}{\sin i} \cdot \frac{L}{2}$$
RADAR GEOMETRY – SCHEMA 2 (slope)

Ground r_r:

$$|AB| = \frac{r_r}{\sin(i - p)}$$

Ground pixel area:

$$S_p = S_{flat} \cdot \frac{\sin i}{\sin(i - p)}$$

Example: If Incidence angle is 30° and slope is 15° then ground pixel area:

$$S_p = S_{flat} \cdot \frac{\sin 30^\circ}{\sin(30^\circ - 15^\circ)}$$

$$S_p = S_{flat} \cdot \frac{1/2}{1/4} = \sim S_{flat} \cdot 2$$

The area of the pixel on sloped terrain will be close to 2x larger than on flat ground.

i_p local incidence angle

$$i_p = i - p$$

p slope

$$r_r range resolution$$
TERRAIN DISTORTIONS – SCHEMA 1

Range

Parallel

\[\Delta = \frac{h}{\tan i} \]

Flat ground

\(h \) ... height of the target
\(\Delta \) ... displacement

Radar shadow occurs if:
\(i > 90 - p' \)

Layover occurs if:
\(p > i \)

Range